All Finite Distributive Lattices Occur as Intervals Between Hausdorff Topologies
نویسندگان
چکیده
It is shown that a finite lattice L is isomorphic to the interval between two Hausdorff topologies on some set if and only if L is distributive. The corresponding results had previously been shown in ZFC for intervals between T1 topologies and, assuming the existence of infinitely many measurable cardinals, for intervals between T3 topologies. Mathematics Subject Classifications (1991): Primary: 06D05, 54A10; secondary: 54D80.
منابع مشابه
Finite Intervals in the Lattice of Topologies
We discuss the question whether every finite interval in the lattice of all topologies on some set is isomorphic to an interval in the lattice of all topologies on a finite set – or, equivalently, whether the finite intervals in lattices of topologies are, up to isomorphism, exactly the duals of finite intervals in lattices of quasiorders. The answer to this question is in the affirmative at le...
متن کاملDualities in Lattice Theory
In this note we prove several duality theorems in lattice theory. We also discuss the connection between spectral spaces and Priestley spaces, and interpret Priestley duality in terms of spectral spaces. The organization of this note is as follows. In the first section we collect appropriate definitions and basic results common to many of the various topics. The next four sections consider Birk...
متن کاملDistributive Lattices and Cohomology
A resolution of the intersection of a finite number of subgroups of an abelian group by means of their sums is constructed, provided the lattice generated by these subgroups is distributive. This is used for detecting singularities of modules over Dedekind rings. A generalized Chinese remainder theorem is derived as a consequence of the above resolution. The GelfandNaimark duality between finit...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملlocally modular lattices and locally distributive lattices
A locally modular (resp. locally distributive) lattice is a lattice with a congruence relation and each of whose equivalence class has sufficiently many elements and is a modular (resp. distributive) sublattice. Both the lattice of all closed subspaces of a locally convex space and the lattice of projections of a locally finite von Neumann algebra are locally modular. The lattice of all /^-topo...
متن کامل